

정치학연구방법론

박상훈 (sh.park.poli@gmail.com) 강원대학교

인과관계의 본질

이론은 인과형 진술의 형태를 가진 가설을 검증함으로써 도출된다. 인과관계에 대한 경험과학의 시각과 문제점을 논의해보도록 하자.

인과관계의 의미

어떤 현상의 생성경로, 어떻게 생겨서 어떻게 성립이 되는가를 추적하기 위한 분석구도로서, 경험적으로 확증될 수 없는 논리적 관계(logical relationship)

원인이 기능(function)하여 결과를 생산

인과관계의 본질

이론은 인과형 진술의 형태를 가진 가설을 검증함으로써 도출된다. 인과관계에 대한 경험과학의 시각과 문제점을 논의해보도록 하자.

인과관계의 의미

인과관계: X o Y

- 함수방정식 (1): Y = F(X)
- 함수방정식 (2): Y = a + bX

인과관계의 본질

이론은 인과형 진술의 형태를 가진 가설을 검증함으로써 도출된다. 인과관계에 대한 경험과학의 시각과 문제점을 논의해보도록 하자.

인과관계에 대한 경험과학적 시각

관계단위의 상호독립성

- 인과관계는 감각경험을 통해 인지할 수 있는 상호독립적 단위들로 구성
- 어떤 현상은 '그와 다른' 현상의 소산으로서, 이 둘은 일정한 기능적 연관성 이외에 어떠한 본질적 동질성도 공유하지 않음.
 - 원인과 결과가 서로 구별될 수 있는 현상이라는 의미

인과관계의 본질

이론은 인과형 진술의 형태를 가진 가설을 검증함으로써 도출된다. 인과관계에 대한 경험과학의 시각과 문제점을 논의해보도록 하자.

인과관계에 대한 경험과학적 시각

규칙성과 재생성

- 인과관계는 규칙성과 재현가능성(replicability)을 나타냄.
- 경험적 증거들을 지속적으로 찾아내어야 양자 간에 인과관계를 받아들일 수 있음.

인과관계의 본질

이론은 인과형 진술의 형태를 가진 가설을 검증함으로써 도출된다. 인과관계에 대한 경험과학의 시각과 문제점을 논의해보도록 하자.

인과관계에 대한 경험과학적 시각

규칙성과 재생성

- 사회과학연구는 인과질서의 규칙을 잠정적인 것으로 간주
 - 어떤 사회현상이 생기는 인과경로는 귀납적으로 추론되나 귀납적 일반화를 통해 도출된 인과질서는 귀납사례의 범주에 제한되기 때문에 조건적(conditional)
 - 어떤 사회현상을 불러일으키는 모든 원인을 찾을 수는 없음; 원인이 항상 일정한 결과를 생산하는지, 더 나아가 왜 그러한지를 경험적으로 확인할 수 없음.

인과관계의 본질

이론은 인과형 진술의 형태를 가진 가설을 검증함으로써 도출된다. 인과관계에 대한 경험과학의 시각과 문제점을 논의해보도록 하자.

인과관계에 대한 경험과학적 시각

규칙성과 재생성

- 사회과학연구는 인과질서의 규칙을 잠정적인 것으로 간주
 - 인간의 상호작용으로 인해 나타나는 사회현상은 가변적이며, 사회현상들 간 인과관계는 유동성(fluidity)을 보여줌.
 - 인과관계는 언제든 변할 수 있는 경향(tendency)이며 추세(trend)

인과관계의 추론

시간적 순차: 원인은 반드시 결과에 시간적으로 앞서야 한다

- 각각 독립변인과 종속변인으로 여겨지는 변인들은 적절한 시간차(time lag)를 두고 발생했다는 경험적 근거를 확보해야함.
- 만약 그것이 불가능하다면 이들을 인과적으로 연결시킬 수 없음.

인과관계의 추론

시간적 순차: 반드시 서로 연결하려는 현상들의 발생순차(time order)에 유의

 X_{t-n} [원인] $ightarrow Y_t$ [결과]

- *t*: 특정한 시점
- t-n=t: 보다 앞선 시점

인과관계의 추론

항상적 연계(constant conjunction)

어떤 현상(원인)의 변화가 다른 현상(결과)의 규칙적 변화를 지속적 · 안정적으로 수반 할 때(부수변이, concomitant variation) 이들 사이의 인과관계를 추론할 수 있음.

실제 연구과정에 있어서 논리적 척도로서의 항상적 연계는 다른 경험적 척도로 대체

- 통계적 공변(statistical covariance)
- 함수적 상관관계(functional correlation)

인과관계의 추론

항상적 연계(constant conjunction)

즉, 설명변인과 종속변인 간 공변규칙성이 연구의 시간적\$₩cdot\$공간적 선행조건 하에서 안정적으로 나타날 때 인과관계의 추론에 요구되는 경험적 근거를 얻을 수 있음.

- 그러나 공변규칙성만을 근거로 인과관계의 존재를 단정해서는 안 됨.
- 공변규칙성은 경험적으로 관측된 현상들의 개별적 변이양상(variance)을 통계적으로 연결시킬 수 있다는 점을 보여줄 뿐
- 원인이 결과를 실제로 '생산'했다는 인과성의 본연적 의미는 아님.

인과관계의 추론

항상적 연계(constant conjunction)

항상적 연계는 인과관계의 필요조건(necessary condition)

설명변인과 종속변인이 일정한 규칙에 따라 공변하지 않는다면 인과관계의 추론이 불가능하나 그렇다고 해서 인과관계의 실재를 확증할 수는 없음.

필요조건과 충분조건, 필요충분조건의 차이?

인과관계의 추론

탈허위성(nonspuriousness)

인과관계가 허위성(spuriousness)을 가져서는 안 됨.

설명변인 → 종속변인의 관계가 진정한(genuine) 것이어야 함.

- 허위성은 미처 파악하지 못한 변인의 영향력 때문에 나타나는 경우가 많음.
- 초기의 관계가 무너지느냐, 무너지지 않느냐로 파악할 수 있음.

인과모형

인과모형의 의미

과학적 연구는 모형(model)을 통해 이루어짐.

- 모형은 현실세계의 모습을 이론적으로 재구성한 분석기제(analytic device)
 - 연구대상의 핵심구성단위, 작동변인(operating variable)
 - 작동변인들의 관계가 형성되는 경로(path)
- 인과모형(causal model): 어떤 현상의 인과적 생성경로를 체계적으로 보여주는 모형

인과모형

인과모형의 의미

모형은 현실세계와의 상호조응성(isomorphism)을 갖고 있음: 길잡이의 역할

- 단순하게 재구성된 현실(simplified reality)
- 모형의 설계자는 특정 이론에 따라 실제 현상의 표출양상 가운데 가장 중요하다고 판단되는 것만을 선택해 그들 간의 관계양상을 설정
- 즉, 중요한 것들을 추출하므로 같은 현상에 대한 서로 다른 모형들이 있을 수 있음.

인과모형

인과모형의 의미

모형은 어디까지나 이론에 기초를 두고 있지만, 이론이 없다면 연구자의 고유한 판단에 따라 만들어질 수 있음.

- 그러나 이론/고유 판단 모두 작동변인의 선택과 변인들 간 관계경로 설정에 있어서 불완전성을 벗어나지 못함.
- 모형은 어디까지나 현실을 단순화한 재구성체에 불과함.

인과모형

인과모형의 의미

모형은 어디까지나 이론에 기초를 두고 있지만, 이론이 없다면 연구자의 고유한 판단에 따라 만들어질 수 있음.

- 모형-현실의 관계
 - 구조적 상호조응성(structural isomorphism): 구조의 측면에서는 비슷
 - 기능적 상호조응성(functional isomorphism): 기능의 측면에서는 상호조응성 X

인과모형

인과모형의 의미

사회과학연구의 모형은 대부분 구조적 상호조응성만을 가진 불완전한 모형

- 인간의 사회적 상호작용을 다루는 부분에서 기능적 상호조응성을 가진 모형을 설계하기가 대단히 어렵기 때문
- 왜냐하면 (1) 인간의 행위와 심리적 정향은 자연현상과 달리 끊임없이 변하며, (2) 모형을 구성하는 인자(작동변인)의 엄격한 통제가 불가능하고, (3) 윤리적 장벽을 극복하기 어렵기 때문

인과모형

모형 · 이론 · 가설: 모형의 기능

모형, 이론과 가설의 명칭이 서로 다른 것은 연구에 따른 방법론적 성격의 차이 탓

- 가설: 어떤 현상의 인과적 생성경로에 관한 연구자의 선험적 기대만을 담고 있는 진술
 - ∘ 가설모형(hypothetical model): 가설이 검증에 필요한 방법론적 요건을 갖출 때
 - 구성개념이 경험적 지칭성을 가진 작동변인으로 재구성되고 그들 간의 개략적 연계 구조가 통계적 상관관계처럼 구체적 형상을 가진 관계경로로 대체될 때
- 확증모형(confirmed model): 검증을 통해 경험적으로 뒷받침된 가설모형

인과모형

모형 · 이론 · 가설: 모형의 기능

모형, 이론과 가설의 명칭이 서로 다른 것은 연구에 따른 방법론적 성격의 차이 탓

- 동일한 현상을 다루는 몇 개의 확증모형을 일반화하여 이론을 만들게 됨.
- 모형은 이론화 과정에서 연구자의 이론적 인식과 현실세계 사이의 연결고리 역할을 수행
- 이론(가설): $C_1 o C_2$. 이때 C_1 와 C_2 는 이론의 구성개념
- 모형: $V_3 = a + b_1 V_1 + b_2 V_2 + e$.
 - $\circ V_3$ 는 C_2 의 작동변인(종속변인), V_1, V_2 는 C_1 의 작동변인(설명변인)
 - e는 교란항(오차항)

인과모형의 구조

인과모형의 구성단위: 변인

작동변인과 교란항: 인과모형은 인과관계의 논리적 성격에 따라 두 가지 작동변인으로 구성

- 종속변인~설명변인
- 모형에서 누락된 수많은 요인들을 포함한 설명변인: 모형설계자가 설정한 원인~결과 간의 관계에 영향을 줄 수 있는 잠재적 요인들

인과모형의 구조

인과모형의 구성단위: 변인

작동변인과 교란항: 인과모형은 인과관계의 논리적 성격에 따라 두 가지 작동변인으로 구성

- 모형설계자가 미처 발견하지 못하였으나 비체계적인 영향력을 행사하는 외부요인들을 교란 항이라고 부름.
 - 단순화가정(simplifying assumption): 작동변인들만으로 현실세계가 움직이며, 교란항의 영향력은 무시할 수 있다는 가정

인과모형의 구조

인과모형의 구성단위: 변인

작동변인과 교란항: 인과모형은 인과관계의 논리적 성격에 따라 두 가지 작동변인으로 구성

- 인과경로에 영향을 주는 변인들(세 가지 유형)
 - 설명변인: 모형 속에서 종속변인에 직 · 간접적 영향을 미치는 변인
 - 중첩변인(confounding variable): 모형에 포함되지 않은 외부요인으로서 모형 속
 의 설명변인과 함께 종속변인에 영향을 주는 변인
 - 교란항: 모형에 포함되지 않은 외부변인. 종속변인에 대한 독자적 영향력은 갖고 있지만
 모형 내 설명변인 또는 설명변인에 영향을 주는 다른 외부요인과 연관되지 않음.

인과모형의 구조

인과모형의 구성단위: 변인

내생변인(endogenous variable)과 외생변인(exogenous variable)

• 내생변인: 모형에 포함된 여타 작동변인의 인과적 영향력을 받는 변인

인과모형의 구조

인과모형의 구성단위: 변인

내생변인(endogenous variable)과 외생변인(exogenous variable)

- 부분적 내생변인(partially-endogenous variables): 모형 속의 다른 작동변인들뿐 아니라 교란항의 영향력도 함께 받음.
 - 모형 속의 작동변인이 외부요인(교란항)의 영향력으로부터 완전히 차단된다는 비현실
 적 가정을 받아들이지 않는 한 모든 내생변인은 부분적 내생변인의 성격을 갖는다고 보아야함.
- 주요 설명변인과 종속변인 간 아무 간섭변인도 상정되지 않았다 해서 현실세계 역시 그러하다고 단정할 수는 없음.

인과모형의 구조

인과모형의 구성단위: 변인

내생변인(endogenous variable)과 외생변인(exogenous variable)

- 부분적 내생변인(partially-endogenous variables): 모형 속의 다른 작동변인들뿐 아니라 교란항의 영향력도 함께 받음.
 - 모형 속의 작동변인이 외부요인(교란항)의 영향력으로부터 완전히 차단된다는 비현실적 가정을 받아들이지 않는 한 모든 내생변인은 부분적 내생변인의 성격을 갖는다고 보아야함.
- 과학적 연구에 있어서 모든 모형은 계속 변화하거나 일시적으로 붕괴되는 과정적 성격을 지 닌다.
- 외생변인: 전적으로 모형에 포함되지 않은 외부요인에 의해 결정되는 변인

인과모형의 구조

인과모형의 구성단위: 인과경로

인과모형이 제시하고 있는 작동변인 간의 관계 혹은 교란항과 작동변인 간의 관계

- 각 인과경로가 서로 연결된 총체적 인과네트워크(casual network)의 모습은 모형설계 자의 이론적 시각에 따라 설정됨.
 - 직접경로(direct path): 그 사이에 어떤 변인도 개입하지 않는 경로
 - 간접경로(indirect path): 직접경로를 거쳐 진행되는 경로

인과모형의 구조

인과모형의 유형

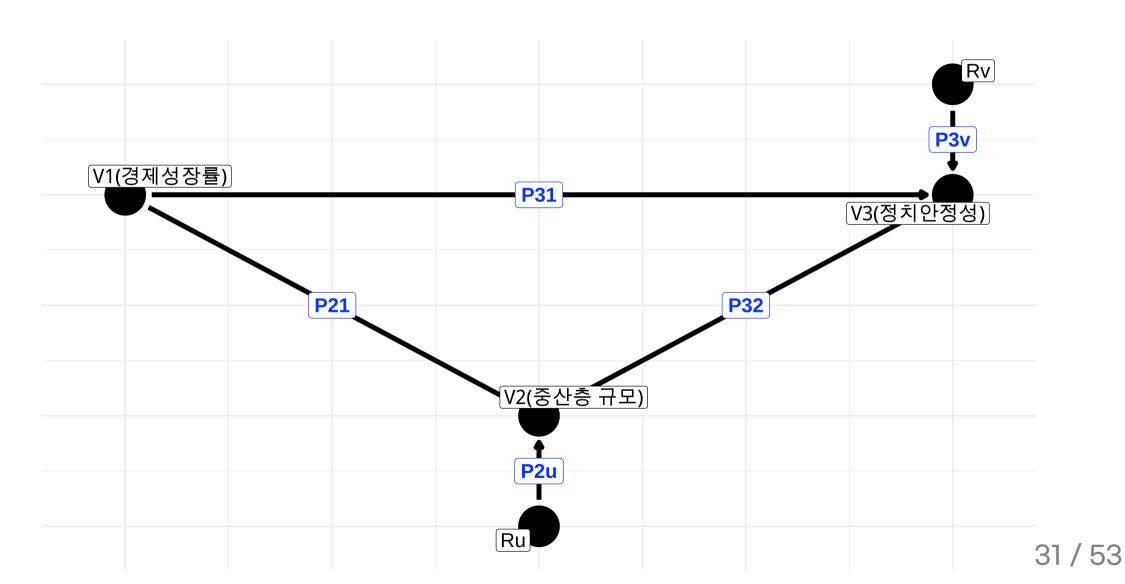
경험과학연구는 주로 수식을 통해 모형을 제시

- 작동변인 값을 정확히 측정해 그들 간의 공변양상을 체계적으로 파악하는 데에는 수리통계 모형(mathematical-statistical model)이 적합하다고 보기 때문
- 또한 계량정보(quantitative information)가 가진 상호주관성으로 인해 설명력과 예측력을 쉽게 판정할 수 있다는 장점이 있음.

인과모형의 구조

인과모형의 유형

축차모형(recursive model)


두 개 이상의 작동변인들이 한쪽 방향을 향해 순차적으로 연결된 모형

인과모형의 구조

인과모형의 유형

축차모형(recursive model): 구조

- 1. 인과경로의 출발점과 종착점이 명확히 존재하며,
- 2. 출발점 \rightarrow 종착점의 인과경로가 일방적(non-circulatory)이고,
- 3. 교란항의 영향력을 인정한 열린 모형(open model)

인과모형의 구조

인과모형의 유형

축차모형(recursive model): 교란항의 가정

- 1. 교란항의 영향력은 무시할 수 있을 정도로 약한 수준임.
- 2. 교란항 사이에는 어떤 형태로든 인과경로가 존재하지 않음.
- 3. 어떤 설명변인과 연결된 교란항과 여타 설명번인 간 상관관계가 존재하지 않음.
 - 교란항은 모형의 검증결과에 따라 그 중요성이 판정됨.
 - 교란항의 영향력을 무시한 모형이 검증을 통해 무너지거나 작동변인의 영향력이 기대한
 만큼 충분하지 않다는 사실이 밝혀진다면 교란항의 재검토가 이루어져야 함.

인과모형의 구조

인과모형의 유형

축차모형(recursive model): 교란항의 가정

- 1. 교란항의 영향력은 무시할 수 있을 정도로 약한 수준임.
- 2. 교란항 사이에는 어떤 형태로든 인과경로가 존재하지 않음.
- 3. 어떤 설명변인과 연결된 교란항과 여타 설명번인 간 상관관계가 존재하지 않음.
 - 교란항에 포함되어 있을 가능성이 있는 수많은 외부요인들 가운데 몇 개를 이론적 판단
 에 따라 선정하여 작동변인으로 배치한 새로운 모형을 설계할 수밖에 없음.

인과모형의 구조

인과모형의 유형

회귀분석(Regression)

- 설명변인과 종속변인 사이의 함수적(선형적 또는 비선형적) 상관관계를 추적하기 위해 널리 사용되는 통계분석기법
- 이러한 상관관계의 형상과 심도를 회귀계수(regression coefficient, β), 상관계수 (correlation coefficient, R), 결정계수(coefficient of determination, R^2) 등을 통해 파악함.
- 검증하려는 가설(모형)의 성격에 따라 간단한 중다회귀분석(multiple regression)으로 부터 로짓(Logit), 프로빗(Probit) 등 고도의 방법까지 적절한 유형을 선택하여 사용함.

인과모형의 구조

인과모형의 유형

Cov[X, Y]

- Cov는 공변(covariance)를 지칭하는 통계학 용어이며, Cov[X,Y]는 두 개의 변인 X, Y의 공변양상, 즉 상관관계(R_{xy})의 수준을 보여줌.
- Cov[X,Y]=0일 경우 X와 Y 사이에는 상관관계가 없음.
- 변인들 간 상관관계는 주로 회귀분석을 통하여 파악함.

인과모형의 구조

인과모형의 유형

축차모형의 수리적 표현: 구조방정식

구조방정식(structural equation)

• 모형의 총체적 인과구조(인과네트워크)를 수리적으로 표현한 연립방정식(선형방정식, linear equation)

인과모형의 구조

인과모형의 유형

축차모형의 수리적 표현: 구조방정식

3변인형 축차모형의 구조방정식

- 구조방정식 1: $V_2=P_{21}V_1+P_{2U}R_U$ / 구조방정식 2: $V_3=P_{31}V_1+P_{32}V_2+P_{3V}R_V$
 - \circ 경로계수(path coefficient): 구조방정식 1,2에서 P_{21} , P_{31} , P_{32} , P_{2U} , P_{3V}
 - 경로계수의 값이 크면 클수록 서로 연결되는 변인들의 상관관계가 강해짐.
 - 구조방정식의 '더하기'(+)는 연결되는 단위들의 통계적인 상호독립성(statistical independence)을 지칭하는 부호로 영향력이 서로 겹치지 않는다는 것을 의미

인과모형의 구조

인과모형의 유형

축차모형의 수리적 표현: 구조방정식

경로계수(김웅진, 2011: 73-78; Asher, 1976: 17-20)

- 인과모형의 구조방정식에 있어서 작동변인 간의 관계양상을 결정하는 계수
- 회귀분석을 통해 얻어지는 베타(β), 즉 표준화된 회귀계수(standardized regression coefficient)의 값을 사용
- 회귀계수는 설명변인 \rightarrow 종속변인 사이의 선형적\$Cdot\$함수적 상관관계의 모습을 결정하는 계수(즉, Y=a+bX라는 선형 방정식에서 b)

인과모형의 구조

인과모형의 유형

축차모형의 수리적 표현: 구조방정식

인과관계, 상관관계와 경로계수

- 인과관계의 가장 핵심적 추론척도는 원인 → 결과의 항상적 연계
- 실제 연구과정에서는 논리적 의미에 있어서의 항상적 연계를 설명변인 → 종속변인의 통계적 공변, 곧 상관관계로 대체
 - 따라서 상관관계의 깊이를 표현하는 경로계수 값이 클 때 작동변인들 사이에 강한 인과 관계가 존재한다고 추론할 수 있음.

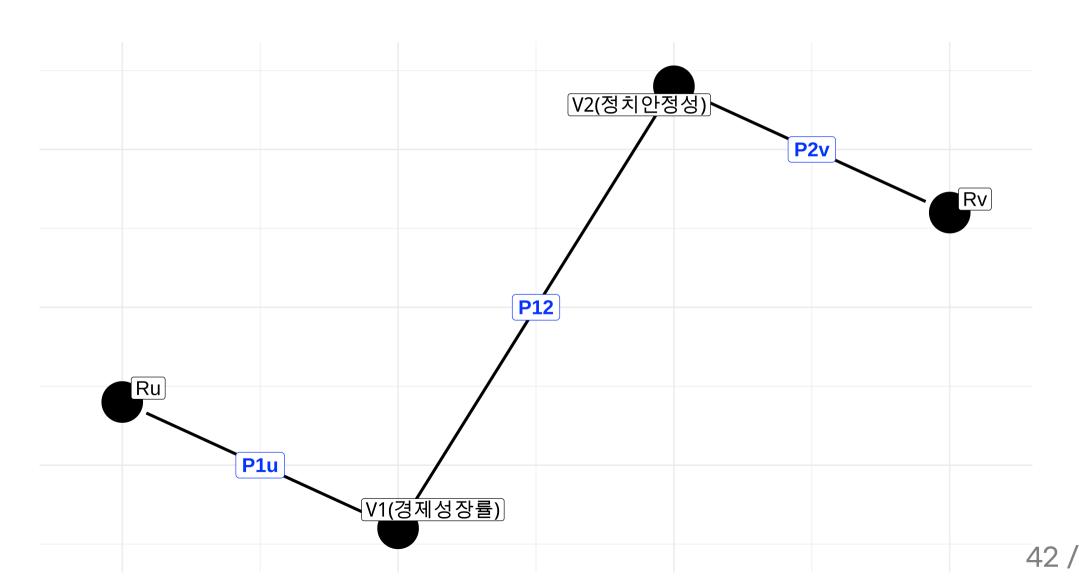
인과모형의 구조

인과모형의 유형

비축차모형(non-recursive model): 구조

되돌아오는 인과경로(순환경로)를 가지고 있기에 출발점, 종착점 규정이 어려움.

- 모든 변인이 출발점이나 도착점이 될 수 있음.
- 모든 변인이 다른 변인들 사이의 관계를 연결해주는 매개변인의 역할을 수행할 수도 있음.


인과모형의 구조

인과모형의 유형

비축차모형(non-recursive model): 구조

실제로 비축차모형을 만들 때에는 이론적 판단에 따라 작동변인의 순차를 결정

- 두 개의 작동변인이 동시에 서로 영향을 주는 상황을 생각할 수 없기 때문
- 상호인과관계(reciprocal causal relation), $V1 \Longleftrightarrow V2$
 - 관측이 불가능하더라도 어느 정도 시간차를 두고 형성되는 두 개의 일방적 관계로 이루 어져 있다고 보아야 함.
 - \circ 동시인 것처럼 보이지만 V1 o V2에서 시간이 지나고 V2 o V1.

인과모형의 구조

인과모형의 유형

비축차모형(non-recursive model): 교란항

축차모형처럼 교란항의 영향력을 인정

그러나 축차모형과 달리 비축차모형에서 교란항들은 서로 연관되어 있음.

인과모형의 구조

인과모형의 유형

비축차모형의 수리적 표현: 구조방정식

2변인형 비축차모형의 구조방정식

- 구조방정식 1: $V_1 = P_{12}V_2 + P_{1U}R_U$
- 구조방정식 2: $V_2 = P_{21}V_1 + P_{2V}R_V$

인과모형의 구조

인과모형의 유형

비축차모형의 수리적 표현: 구조방정식

2변인형 비축차모형의 구조방정식

- 구조방정식 1: $V_1 = P_{12}(P_{21}V_1 + P_{2V}R_V) + P_{1U}R_U$
- 구조방정식 2: $V_2 = P_{21}(P_{12}V_2 + P_{1U}R_U) + P_{2V}R_V$

인과모형의 구조

인과모형의 검증

축차모형과 비축차모형은 주로 회귀분석에 기반을 둔 경로분석(path analysis)을 통해 검증

- 경로분석은 작동변인들 사이의 인과경로를 추적해 모형의 구조적 타당성을 판정하는데 사용되는 통계분석기법
 - 。 경로분석
 - \circ 설명변인 o 종속변인, 설명변인 o 설명변인, 교란항 o 설명변인, 교란항 o 종속변인
 - 인과적 영향력이 흐르는 경로가 존재하는가? 그 경로의 강도가 어느 정도인가?
 - \circ 변인 간의 상관관계(correlation, R_{ij})가 클수록 더욱 큰 인과적 영향력

인과모형의 구조

인과모형의 검증

축차모형과 비축차모형은 주로 회귀분석에 기반을 둔 경로분석(path analysis)을 통해 검증

- 경로분석은 작동변인들 사이의 인과경로를 추적해 모형의 구조적 타당성을 판정하는데 사용되는 통계분석기법
 - \circ 변인 간의 상관관계(correlation, R_{ij})가 클수록 더욱 큰 인과적 영향력
 - 구조방정식 설정
 - 경로계수 측정
 - 측정된 경로계수를 이용한 인과구조 해체와 그에 따른 모형의 적실성 진단

인과모형의 구조

인과모형의 한계

불완전성 · 잠정적 폐쇄성 · 상대성

어떤 현상의 인과적 생성경로에 관여하는 모든 변인을 모형 안에 집어넣을 수 없음.

- 모형설계자는 인과관계의 사슬을 이론적 시각에 따라 끊어야 함.
 - 즉, 소수의 주요 변인(critical variable)만을 작동변인으로 선택
- 모형의 구축은 열린 모형을 잠정적으로 닫는 작업 ightarrow 모형의 구조를 지속적 재조정

인과모형의 구조

인과모형의 한계

불완전성 · 잠정적 폐쇄성 · 상대성

작동변인의 선정에 관한 절대 → 단정적 기준 없음

- 모든 모형은 단지 상대적 적실성을 지닐 뿐
- 실제로는 모든 모형이 상황과 조건에 따라 나름대로의 설명력을 발휘

인과모형의 구조

인과모형의 한계

인과경로의 개연성과 유동성

모형이 제시하고 있는 인과경로의 성격을 어떻게 받아들여야 하는가?

단정적인 모형은 예측오차(prediction error)가 발생할 수 없음.

그러나 현실세계는 수많은 요인들의 상호작용에 따라 결정

- 현실에서 완벽하게 닫힌 단정적 모형은 설명력과 예측력을 상실하기 마련
- 따라서 우리는 어느 정도의 예측오차를 상정
- 모든 모형은 예측오차를 갖고 있기에 잠정성과 개연성을 벗어나지 못함.

인과모형의 구조

인과모형의 한계

인과경로의 개연성과 유동성

회귀모형(회귀방정식)의 오차항

•
$$Y = a + b_1 X_1 + b_2 X_2 + b_3 X_3 + e$$

- \circ e: 오차항(정체가 규명되지 않은 교란항들)
 - *e*의 *Y*에 대한 영향력을 최소화
 - ullet 설명변인 X_1, X_2, X_3 의 Y에 대한 영향력을 최대화

인과모형의 구조

인과모형의 한계

인과경로의 개연성과 유동성

인과네트워크를 어떻게 확장하느냐에 따라 같은 작동변인의 역할이 언제든 바뀔 수 있음.

- 각 작동변인이 수행하는 역할과 작동변인들 간 직접경로 또는 간접경로는 모형검증이 끝나 인과구조가 잠정적으로 닫힐 때 최종적으로 결정됨.
- 모형 속의 인과경로는 항상 유동적임.

감사합니다!

궁금한 것이 있으면 언제든 연락하세요.

강사 연락처

연락처	박상훈
$ \mathcal{Q} $	sh.park.poli@gmail.com
	sanghoon-park.com/
▣	영상바이오관 405